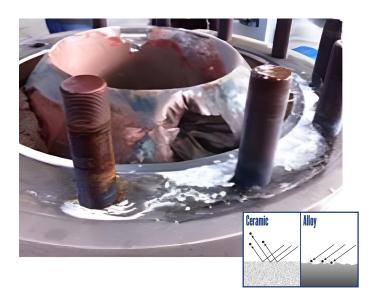


InfiniFlo Ceramic Series

Why Ceramic Valves?


- Ceramic materials are 6-8 times harder than stainless steels.
- The thickness of Flo-Tite's ceramic material is often measured

in inches, typically 1/4" and thicker. Most hard coatings are measured in microns. For example, Hard Chrome coatings are typically less than one-thousandth (0.001") of an inch thick.

· Extreme hardness and high temperature capabilities give

ceramics exceptional resistance to cavitation, even continuous, aggressive cavitation does not affect the material.

• With special ball and seat processing, bubble-tight shut-off can be achieved.

A valve severely corroded by an abrasive chemical must be repaired or replaced often.

About Us

1

Flo-Tite wants to provide the process industry with special valves it has never seen before. Employing the brightest engineers and machinists that are able to combine metal and ceramics effectively, we are able to manufacture valves to **API**, **ANSI**, **CE and ISO 9001 standards.** We have committed ourselves to R&D and engineering expertise in the ceramic valve industry, utilizing the latest CAD/CAM software and manufacturing methods. Our extensive product offering means that Flo-Tite is the world leader in ceramic valve technology. When you have an opportunity to use one of our valves in your severe plant application, you'll understand why we are the best at producing Ceramic Valves – For the Toughest Process Applications.

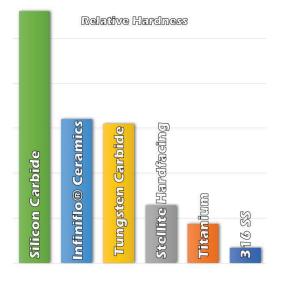
Actuator failure. Severely worn steel, ceramic untouched.

About Ceramic Materials

Infini	Infiniflo [®] Ceramic Series Material Properties										
		Alumina	Zirconia	Silicon Nitride	Silicon Carbide	Stainless Steel					
		Al ₂ O ₃	ZrO ₂	Si ₃ N ₄	SiC	SS					
		99.5%	Y-PSZ		SSiC	316					
Density	g/cm ³	3.90	6.02	3.20	3.15	8.0					
Hardness	Vickers	1820	1200	1400	2800	169					
Flexural/Tensile Strength	MPa	379	1150	800	380	550					
Max Working Temp	°C/°F	1500/2732	500/932	1000/1832	1500/2732	925/1697					
Coeff of Thermal Expansion (CTE)	x10 ⁻⁶ /°C	8.4	10.3	3.3	4.0	16.0					
Compressive Strength	MPa	2200	2500	2800	3500	240					
Modulus of Elasticity	GPa	350	210	320	410	193					
Thermal Conductivity	^W / _{mK} (20C)	25	2.2	29	125	16					
Relative Cost		3	3	10	7	1					
Relative thermal shock capability		1	2	4	3	5					
Relative thermal shock ca	apability: 1 – po	oor. 2 – mode	rate. 3 – go	od. 4 – excell	ent. 5 – best						

	Infiniflo [®] Series Corrosion Resistance Comparison										
	Temp	PTFE	99.5% Alumina	Zirconia	Silicon Nitride	Silicon Carbide	C276	316 SS			
20% HCL	60C	А	А	А	В	А	В	С			
20% HCl	95C	А	А	А	С	А	С	х			
90% H ₂ SO ₄	95C	А	А	А	В	А	С	С			
60% H₃PO₄	95C	А	А	А	С	А	А	С			
10% HF	60C	А	В	С	А	А	В	С			
46% HF	95C	А	С	С	С	А	С	х			
60% HNO₃	95C	А	В	А	С	А	С	В			
30% NaOH	60C	А	В	А	В	А	А	А			
30% NaOH	95C	А	В	В	С	А	А	В			
	A – Negligible corrosion C – Significant, not recommended B – Moderate corrosion, annual inspection recommended X – Aggressive corrosion, failure very quickly										

Zirconia - Zirconium Oxide (ZrO2) Alumina - Aluminum Oxide (Al2O3) Silicon Carbide (SiC) Silicon Nitride (Si3N4)



From your experience, you might guess that all ceramic materials are white, but Silicon Carbide is a charcoal color and Silicon Nitride is a shade of grey. Alumina has varying shades of white and cream and zirconia is typically a white color. The most commonly used ceramics in our valves are Zirconia and Alumina. Zirconia is the strongest of the two but is slightly less hard. Typically Alumina is used in seats for hardness and Zirconia in balls because of the need to withstand being torqued while opening and closing. Silicon Carbide is the hardest of all the common ceramic materials but is very expensive. Silicon Nitride is used occasionally when thermal shock may be an issue.

Infiniflo® Ceramic Series Wear Resistance

"Material hardness" or just "hardness" is the property that is most useful in determining ability to resist erosive wear. High hardness materials will resist attack by particulate that has the potential to damage softer materials. Generally, the material

of the wear surface must be harder than the media to resist erosion. The graph below shows where Flo-Tite's ceramic Series falls in the hardness spectrum. Silicon carbide is often used in extremely high abrasive applications and is also a ceramic material.

Heavy, thick ceramic materials will continously "renew" themselves in operation. When ceramic does become damaged in service due to an extraordinary circumstance such as a chip or particularly aggressive wear, the surface remains the same. There is no charge in the material that is exposed to the flow and removal just exposes new ceramic material with the same excellent hardness properties as the original surface.

Coatings such as HVOF, Stellite or Tungsten Carbide are typically applied in very thin cross sections (often 0.001" thick) and when damaged, will expose the softer base material to abrasive wear that is not intended. Once that happens, the coating will be quickly undermined and eventually disappear in the region of damage, leading to eventual failure of the valve body.

It is common to see ceramic show no discernable wear YEARS after installation in abrasive service.

WWW.FLOTITE.COM

910-738-8904

CRD

Ceramic Rotating Disc Valve Self cleaning Isolation of dry media Fly Ash Hopper Bottom valve Sizes 2" to 12"

Hopper Bottom valve Sizes 2" to 12" Pressure to 40 bar/588 psi

CBF

Ceramic Butterfly Valve

Narrow take out Isolation of slurries Sizes 2" to 24" Pressure to 10 bar/147 psi

Ceramic Pneumatic Transport Valve

Allows space for particles Isolation of dry media Aluminum manufacture Fly Ash Sizes 2" to 24" Pressure to 16 bar/235 psi

CSB

Ceramic Segmented Ball Valve

Multi Choice Series Ceramic Ball/Seat

Allows space for particles Isolation of dry media Sizes: 2" to 8" Pressure to 16 bar/235 psi

CBV

Ceramic Ball Valve

Aggressive wear and corrosion Isolation and Control of: Slurries Light dry particulate Sizes: 1/2" to 8" Pressure to 40 bar/588 PSI (2") 20 bar/294 psi (2.5"+)

CSK

Ceramic Slurry Knife Gate

Self cleaning Isolation of slurries Bottom ash FGD media Mining tailings Sizes: 2" to 24" Pressure to 10 bar/147 psi

Aggressive Abrasion Valve Isolation Service Threaded and SW ends available Sizes: 1/2" to 4" Pressure to 40 bar/588 PSI (2")20 bar/294 psi (2.5"+)

3

Principles of Ceramic Valve Design

2.

The durability of the valve seat is crucial to the integrity of the entire valve.

Retain the media in the pipeline system.

Minimize possible leak points by minimizing the size of irregular valve packings.

Advantages of Flo-Tite's Ceramic Valves

Valve	Pricing	Corrosion	Wear	Sealing	Light	Service	Temperature
Types	Advantages	Resistance	Resistance	Performance	Torque	Life	Tolerance
Ceramic	\checkmark	~~	~~	~~	11	~~	~
Plastic	~~	11	•	•	•	•	•
Metal	11	•	•	1	\checkmark	•	~~
Alloy	•	•	~	1	1	~	11

*The above chart presents the characteristics of ceramic valves compared to other types of valves.

Corrosion resistance

Flo-Tite's advanced ceramics have very stable chemical properties for most acid-base media, performing excellent corrosion resistance.

High strength

Flo-Tite adopts high-performance advanced ceramics as valve ball and lining materials — flange connection, three-stage structure design, forged steel shell, ensuring easy maintenance and high strength.

High hardness

Flo-Tite's zirconia ceramics balls have hardness up to HRA88, second only to the diamond.

Wear resistance

Advanced ceramics' ultra-high hardness allows Flo-Tite's ceramic valves to operate against the erosion of solid particles in fluid flow. Also, the conveying medium will not be contaminated by the peeling material caused by scouring.

Zero leakage

Flo-Tite's ceramic ball valves adopt a surface contact sealing structure between ball bodies and valve seats. The sealing surface is well polished with high roundness and accuracy. ANSI VI sealing level is possible.

Self-lubrication

With precise ground surface between ball bodies and valve seats, Flo-Tite's ceramic ball valves are selflubricated in the On/Off process with slight resistance and smooth On/Off switch.

Low torque value

4

Since Flo-Tite's ceramic ball valves are self-lubricated, they have low torque values and are easy to maintain. *Long service life*

Because of the above mentioned properties, Flo-Tite's ceramic ball valves significantly extend service life and reduce maintenance rates.

Ceramic Valves for the Toughest Process Applications

Model CBV Ceramic Ball Valve

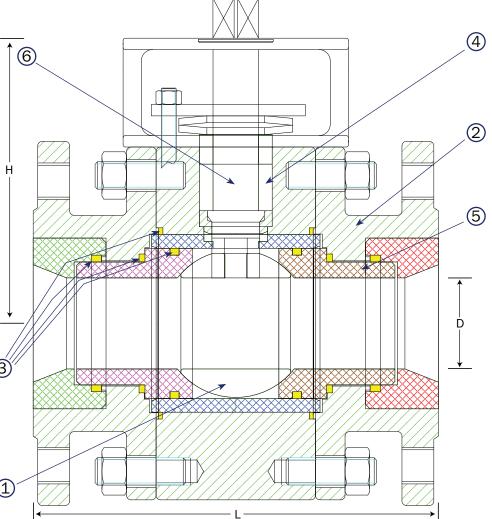
Ceramic Ball Valve Advantages

- Exceptional Corrosion Resistance
- Ceramics are 8 times harder than Stainless Steel
- Customizable for Flanges, Materials, V-port and Seat Configurations
- Metal Body is NON-Wetted part
- Zero Leakage capability

Typical Usage

- Slurry Flow Control
- Highly Corrosive Chemicals (Oil Industry, Chemical plants, corrosive applications)
- Powder Pneumatic transport

Als	50 A	Ava	ila	bl	e:	
-						

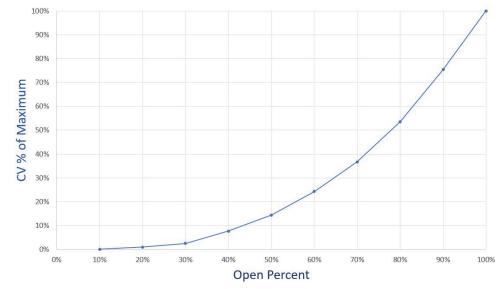

Ceramic Seated Knife Gates to 24" Ceramic Segmented Ball to 16" Ceramic Seated Butterflies

Standard Valve								
Pressure Rating:	See Back of Sheet							
Temperature Rating:	350° F (177°C)							
Maximum Size:	12 x 8"							
Extended range units ava	Extended range units available on custom basis.							

Typical Materials								
1	Ball	Zirconia Ceramic						
2	Body	WCB/CF8						
3	0-Ring	FKM / Viton						
4	Packing	Graphite / PTFE						
5	Seat / Lining	Alumina Ceramic						
6	Stem	Hastelloy C276						

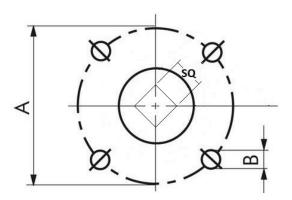
	Dimensions (in) ANSI 150											
Size		1/2"	3/4"	1"	1 1/2"	2"	2 1/2"	3"	4"	5"	6"	8"
Face-to-Face	L	4.25	4.62	5.00	6.50	7.00	7.50	8.00	9.00	9.65 _A	10.50 B	11.50 B
Bore	D	0.50	0.50	0.75	1.00	1.50	2.00	2.50	3.00	4.00	5.00	6.00
Height	Н	2.20	2.50	3.10	3.50	3.80	4.20	4.60	5.50	6.70	8.00	9.10
Weight	lb	10	14	15	26	40	53	73	128	209	308	462
Full Port CV		8	14	24	55	90	130	195	340	495	750	1100
Pressure Limit	psi	588	588	588	588	588	294	294	294	294	294	294
ISO 5211 Mour	nt	F05	F05	F07	F07	F10	F12	F12	F14	F14	F14	F16

Note: Higher pressure ratings available upon request and engineering review1/2" - 4" -ANSI Full Port F-FA = 5" NonstandardB = 6" - 8" REDUCED PORT


Flo-Tite • 4815 West 5th St, Lumberton, NC 28358 • Phone: (910)738-8904 • www.flotite.com

Due to continuous development & improvement of our product range, we reserve the right to alter the dimensions and technical data included in this brochure.

CBV Technical Data


	FULLY OPEN CV VALUES										
	1/2"	3/4"	1"	1 1/2"	2 "	2 1/2"	3"	4"	5"	6"	8"
0	10	18	30	69	113	163	244	425	619	938	1375
V90	5	11	21	45	63	100	150	250	412.5	625	938
V60	3	6	14	31	43	68	100	163	306	438	625
V30	2	3	9	19	31	44	73	106	195	313	438

CBV Top Dimensions

I.	SO 5211 F Pat	ttern Dimensi	ons
F Pattern	Hole Diameter	Bolt Circle	Bolt ø
F04	5.5	42	M5
F04	7/32	1.654	10 - 24
F05	6.5	50	M6
F05	5/16	1.969	1/4 - 20
F07	8.5	70	M8
FUT	3/8	2.756	5/16 - 18
F10	10.5	102	M10
FIO	7/16	4.016	3/8 - 16
F12	12.5	125	M12
112	9/16	4.921	1/2 - 13
F14	17	140	M16
114	3/4	5.512	5/8 - 11
F16	21	165	M20
110	7/8	6.496	3/4 - 10

	//8	6.496	3/4 - 10						
Valve Dimensions									
Valve Size	F Pattern	Square Drive (mm)	Square Height (in)						
1/2"	F04/F05	11	0.67						
3/4"	F04/F05	11	0.67						
1"	F04/F05	11	0.67						
1 1/2"	F05/F07	14	0.79						
2"	F05/F07	17	1.00						
2 1/2"	F07/F10	17	1.00						
3"	F07/F10	22	1.00						
4"	F07/F10	22	1.18						
5"	F07/F10	27	1.18						
6"	F10/F14	27	1.38						
8"	F10/F14	33	1.57						

7

Due to continuous development & improvement of our product range, we reserve the right to alter the dimensions and technical data included in this brochure.

www.flotite.com

Ceramic Valves for the Toughest Process Applications

Model **CPT**

Ceramic Pneumatic Transport

Ceramic Valve Advantages

 \cdot Designed for use with high abrasion media, including dust, catalysts, and other small particles.

• Gate seat is spring loaded to enhance sealing effect for ultra-fine powders.

 \cdot Expansive gate cavity allows flowable product to "flow" into open areas, allowing gate to close

Ceramics are 8 times harder than Stainless
Steel


Typical Usage

- · Transport of Ultra-Fine Particulate
- · Power Plant Fly Ash Handling
- Bauxite transport for aluminum manufacture
- Cement transport in concrete plants

Standard Valve							
Pressure Rating:	150 PSI typical						
Temperature Rating:	650° F (343°C)						
Maximum Size:	12"						
Extended range units available on custom basis.							

Typical Dimensions (Inches, Class 150)									
Size		2″	3″	4″	6″	8″	10″	12″	
F-F (Long)	L	7.87"	9.45"	11.02"	12.60"	13.78"	15.75"	17.72"	
F-F (Short)	L	4.72"	4.72"	4.72"	6.30"	6.30"	7.87"	7.87"	

Note: Higher pressure ratings available upon request and engineering review

FLO-TITE • 4815 West 5th St, Lumberton, NC 28358 • Phone: (910)738-8904 • SALES@FLOTITE.COM

Available Material List

Item	Part Name	Material		
1	Body	WCB, CF8, CF8M, Duplex SS		
2	Seat	Al2O3, SiC, ZrO2		
3	Packing Gland	WCB, CF8, CF8M, Duplex SS		
4	Disc Insert	Al2O3, SiC, ZrO2		
5	Stem	2Cr13,17-4Ph		
6	Knife Gate	CS, SS		
7	Yoke	WCB, CF8, CF8M, Duplex SS		
8	Stem Nut	Copper		
9	Hand Wheel	CI,DI,CS		
10	Locking Nut	CS, SS		

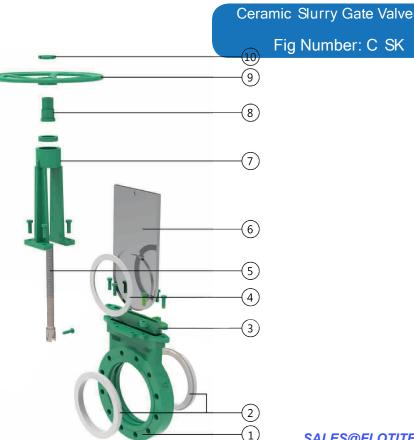
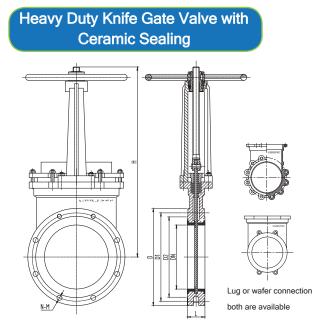



Fig Number: C SK

INFINIFLO_{SERIES}

Dimensions

						Unit: mm
DN	L	D	D1	D2	H (FYI)	N-M
50	43	165	125	100	285	4-M16
65	46	185	145	120	295	4-M16
80	46	200	160	135	315	4-M16
100	52	220	180	155	365	8-M16
125	56	250	210	185	400	8-M20
150	56	285	240	210	475	8-M20
200	60	340	295	265	540	8-M20
250	68	405	355	320	630	12-M22
300	78	460	410	375	780	12-M22
350	78	520	470	435	885	12-M27
400	102	580	525	485	990	16-M27
450	114	640	585	545	1100	16-M30
500	127	715	650	608	1200	20-M30
600	154	840	770	718	1450	20-M33

Specification:

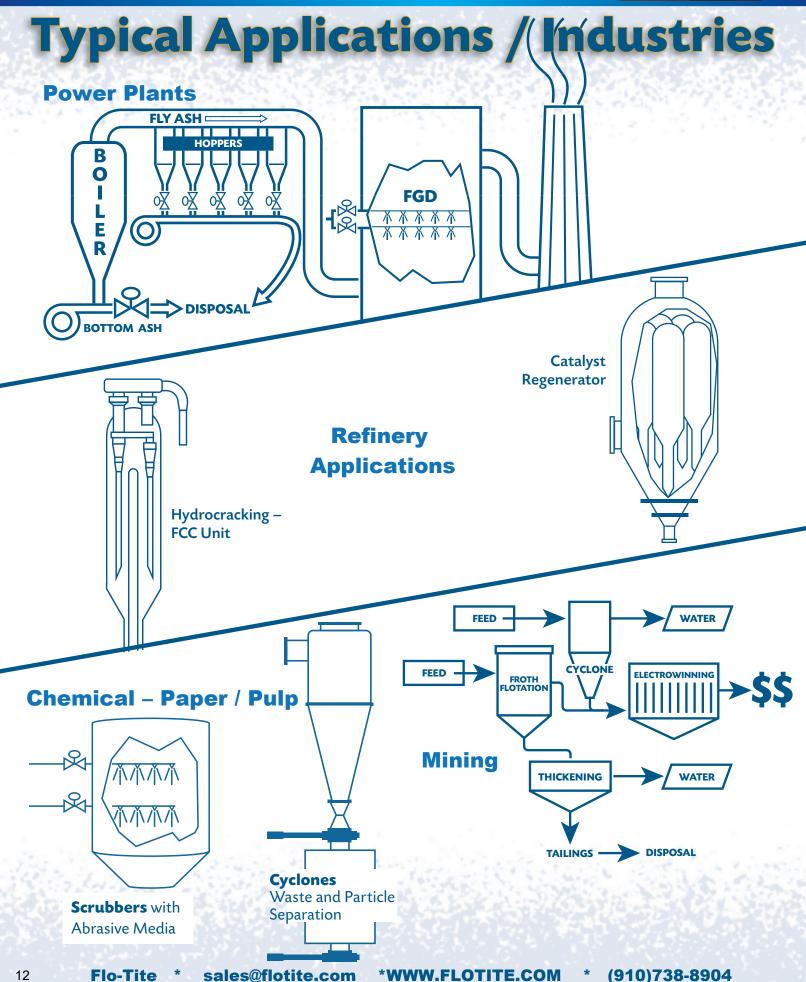
Design Standard: MS-SSP-81

Face to face dimension: VerSpec factory standard or customize

End Flange: GB/T 9113-2010

Inspection and Test: JB/T 9092; Sealing Class See Below:

•Ceramic Sealing Class: II, Polyurethane Sealing Class: VI


•Max Temperature of Ceramic Seat: 200°C, Polyurethane seat: 90°C

•Worm gear or Pneumatic or Electrical actuator operating

All dimension also can be customized, please contact VerSpec representative to get confirmed general drawing. and we reserve the right to make changes within the context of technical development

AI2O3 Ceramic Sealing Knife Gate Valves for Mining Plants Slurry Medium

